Group-theoretical methods for the cryptanalysis of block ciphers

Roberto Civino
University of L'Aquila - Italy
CrypTO Conference 2023

26 May 2023

Block ciphers

Ingredients

- $n \in \mathbb{N}$ such that performing 2^{n} operations is unfeasible $n \sim 128$
- $V \stackrel{\text { def }}{=} \mathbb{F}_{2}^{n}$ the message space

Block ciphers

Ingredients

- $n \in \mathbb{N}$ such that performing 2^{n} operations is unfeasible
- $V \stackrel{\text { def }}{=} \mathbb{F}_{2}^{n}$ the message space

Definition

a block cipher is a set of 2^{n} encryption functions indexed by parameters called keys

$$
\Phi=\left\{f_{k} \mid 1 \leq k \leq 2^{n}\right\} \subset \operatorname{Sym}(V)
$$

Block ciphers

Ingredients

- $n \in \mathbb{N}$ such that performing 2^{n} operations is unfeasible
- $V \stackrel{\text { def }}{=} \mathbb{F}_{2}^{n}$ the message space

Definition

a block cipher is a set of 2^{n} encryption functions indexed by parameters called keys

$$
\Phi=\left\{f_{k} \mid 1 \leq k \leq 2^{n}\right\} \subset \operatorname{Sym}(V)
$$

- $m f_{k}$ is the encryption of the message $m \in V$ using the key k

Block ciphers

Ingredients

- $n \in \mathbb{N}$ such that performing 2^{n} operations is unfeasible
- $V \stackrel{\text { def }}{=} \mathbb{F}_{2}^{n}$ the message space

Definition

a block cipher is a set of 2^{n} encryption functions indexed by parameters called keys

$$
\Phi=\left\{f_{k} \mid 1 \leq k \leq 2^{n}\right\} \subset \operatorname{Sym}(V)
$$

- $m f_{k}$ is the encryption of the message $m \in V$ using the key k
- there exists an efficient algorithm to reconstruct f_{k}

Substitution-permutation networks
(e.g. AES, NIST standard)

Substitution-permutation networks
128 bits
(e.g. AES, NIST standard)

$f_{k}=\gamma \lambda \sigma_{k_{1}} \ldots \gamma \lambda \sigma_{k_{r}}$
$\gamma, \lambda, k \mapsto\left(k_{1}, k_{2}, \ldots, k_{r}\right)$ are public

Cryptanalysis...

... means finding an invariant property \mathcal{I} such that

$$
\mathbb{P}(f \in \Phi \text { satisfies } \mathcal{I}) \gg \mathbb{P}(f \in \operatorname{Sym}(V) \text { satisfies } \mathcal{I})
$$

a good cipher vs a bad cipher in $\operatorname{Sym}(V)$

A famously exploited invariant

A famously exploited invariant

Definition

the derivative w.r.t. $\Delta \in \mathbb{F}_{2}^{n}$ of $f=f_{k} \in \Phi$ is

$$
f_{\Delta}: V \rightarrow V, \quad x \mapsto x f+(x+\Delta) f
$$

A famously exploited invariant

Definition

the derivative w.r.t. $\Delta \in \mathbb{F}_{2}^{n}$ of $f=f_{k} \in \Phi$ is

$$
f_{\Delta}: V \rightarrow V, \quad x \mapsto x f+(x+\Delta) f
$$

(classical) differential cryptanalysis

show that, for some or for all the keys, derivatives w.r.t. some fixed $\Delta \mathrm{s}$ have small images

A famously exploited invariant

Definition

the derivative w.r.t. $\Delta \in \mathbb{F}_{2}^{n}$ of $f=f_{k} \in \Phi$ is

$$
f_{\Delta}: V \rightarrow V, \quad x \mapsto x f+(x+\Delta) f
$$

(classical) differential cryptanalysis

show that, for some or for all the keys, derivatives w.r.t. some fixed $\Delta \mathrm{s}$ have small images
exhibit a pair $\left(\Delta_{I}, \Delta_{O}\right)$ such that the equation

$$
x f_{\Delta_{I}}=x f+\left(x+\Delta_{l}\right) f=\Delta_{O}
$$

has more solution than expected $\left(\Rightarrow \operatorname{Im}\left(f_{\Delta_{I}}\right)\right.$ is smaller $)$

The classical solution

(unprovable) claim

if the encryption functions are such that

- γ has derivatives with large image [computationally feasable]
- λ has good diffusion properties then $f_{k} s$ have large derivative images

The classical solution

(unprovable) claim

if the encryption functions are such that

- γ has derivatives with large image [computationally feasable]
- λ has good diffusion properties then $f_{k} s$ have large derivative images
diffusion and key addition, being affine operations, do not alter the difference distribution!
- $x \lambda+(x+\Delta) \lambda=\Delta \lambda$ for all x
- $x \sigma_{k}+(x+\Delta) \sigma_{k}=(x+k)+(x+\Delta+k)=\Delta$ for all x and k

An alternative approach

everything is optimized to maximize the non-linearity w.r.t. the operation + used to perform the key addition induced by

$$
T \stackrel{\text { def }}{=}\left\{\sigma_{b}: b \in V \mid \sigma_{b}: x \mapsto x+b\right\}<\operatorname{Sym}(V)
$$

- T is elementary abelian regular
- $\forall a, b \in V \quad a \sigma_{b}=a+b$

An alternative approach

consider another elementary abelian regular group

$$
T_{\circ} \stackrel{\text { def }}{=}\left\{\tau_{b}: b \in V \mid \tau_{b}: 0 \mapsto b\right\}<\operatorname{Sym}(V)
$$

- $\forall a, b \in V \quad a \circ b \xlongequal{\text { def }} a \tau_{b}$
- (V, \circ) is a vector space over \mathbb{F}_{2}

Looking at new derivatives

if Φ is a secure block ciphers w.r.t. (classical) differential cryptanalysis ${ }^{1}$, how large the images of o-derivatives are? ${ }^{2}$

$$
f_{\Delta}^{\circ}: x \mapsto x f \circ(x \circ \Delta) f
$$

影

[^0]
Braces coming into play

before we even start, we assume $T_{\circ}<\operatorname{AGL}(V,+)$ [computational]

Braces coming into play

before we even start, we assume $T_{0}<\operatorname{AGL}(V,+)$
[computational]

1. o-derivatives of γ have smaller images

Braces coming into play

before we even start, we assume $T_{\circ}<\operatorname{AGL}(V,+)$

1. o-derivatives of γ have smaller images
2. $x \lambda \circ(x \circ \Delta) \lambda=$?
[computational]
OK
Not-OK
[big issue, see later]

Braces coming into play

before we even start, we assume $T_{0}<\operatorname{AGL}(V,+)$

1. o-derivatives of γ have smaller images
2. $x \lambda \circ(x \circ \Delta) \lambda=$?
3. $(x+k) \circ(x \circ \Delta+k)=$?
[computational]
OK
[big issue, see later]

Braces coming into play

before we even start, we assume $T_{\circ}<\operatorname{AGL}(V,+)$ [computational]

1. o-derivatives of γ have smaller images
2. $x \lambda \circ(x \circ \Delta) \lambda=$?

OK
Not-OK
[big issue, see later]
3. $(x+k) \circ(x \circ \Delta+k)=$?

$$
(x+k) \circ(x \circ \Delta+k)=x \sigma_{k}+(x \circ \Delta) \sigma_{k}
$$

Braces coming into play

before we even start, we assume $T_{0}<\operatorname{AGL}(V,+)$
[computational]

1. o-derivatives of γ have smaller images
2. $x \lambda \circ(x \circ \Delta) \lambda=$?

OK $)^{-1}$
Not-OK
[big issue, see later]
3. $(x+k) \circ(x \circ \Delta+k)=$?

$$
\begin{equation*}
(x+k) \circ(x \circ \Delta+k)=x \sigma_{k}+(x \circ \Delta) \sigma_{k} \tag{1}
\end{equation*}
$$

if $\sigma_{k} \in \operatorname{AGL}(V, \circ)$, then Eq. (1) does not depend on x , therefore we require $T_{+}<\operatorname{AGL}(V, \circ)$ [cryptanalytic]

Binary bi-braces

we want to construct T_{\circ} such that T_{+}normalizes T_{\circ} and T_{\circ} normalizes T_{+}, i.e. a (binary) bi-brace

Binary bi-braces

we want to construct T_{\circ} such that T_{+}normalizes T_{\circ} and T_{\circ} normalizes T_{+}, i.e. a (binary) bi-brace
in this setting we have, given

$$
\begin{aligned}
W_{\circ} & \stackrel{\text { def }}{=}\left\{a: a \in V \mid \sigma_{a}=\tau_{a}\right\} \\
& =\{a: a \in V \mid \forall b \in V \quad a+b=a \circ b\} \\
& =\operatorname{Soc}(V,+, \circ),
\end{aligned}
$$

Theorem ([CDVS06, CCS21])
$1 \leq \operatorname{dim}\left(W_{\circ}\right) \leq n-2$

Binary bi-braces

we want to construct T_{\circ} such that T_{+}normalizes T_{\circ} and T_{\circ} normalizes T_{+}, i.e. a (binary) bi-brace
in this setting we have, given

$$
\begin{aligned}
W_{\circ} & \stackrel{\text { def }}{=}\left\{a: a \in V \mid \sigma_{a}=\tau_{a}\right\} \\
& =\{a: a \in V \mid \forall b \in V \quad a+b=a \circ b\} \\
& =\operatorname{Soc}(V,+, \circ),
\end{aligned}
$$

Theorem ([CDVS06, CCS21])
 $1 \leq \operatorname{dim}\left(W_{\circ}\right) \leq n-2$

and

$$
U_{\circ} \stackrel{\text { def }}{=} V \cdot V=\langle a \cdot b \mid a, b \in V\rangle
$$

where $a \cdot b=a+b+a \circ b$ is such that $U_{\circ} \leq W_{\circ}$ and $V \cdot V \cdot V=0$

Construction

from $T_{\circ}<\operatorname{AGL}(V,+)$ we have that, for each $b \in V$,

$$
\tau_{b}=M_{b} \sigma_{b} \in \operatorname{AGL}(V,+)
$$

Construction

from $T_{\circ}<\operatorname{AGL}(V,+)$ we have that, for each $b \in V$,

$$
\tau_{b}=M_{b} \sigma_{b} \in \operatorname{AGL}(V,+)
$$

Theorem ([CCS21])

let $d=\operatorname{dim}\left(W_{\circ}\right)$ and W_{\circ} being spanned by the last d vector of the canonical basis $\left\{e_{i}\right\}_{i=1}^{n}$ of V, then for each $1 \leq i \leq n-d$ we have

$$
M_{e_{i}}=\left(\begin{array}{cc}
1_{n-d} & \Sigma_{e_{i}} \\
0 & 1_{d}
\end{array}\right)
$$

for some $\Sigma_{e_{i}} \in \mathbb{F}_{2}^{(n-d, d)}$
[precise constraints omitted here]

Solving the issue with the key addition

$$
(x+k) \circ(x \circ \Delta+k)=\Delta+\underbrace{\Delta \cdot k}_{\in U_{0}}
$$

Solving the issue with the key addition

$$
(x+k) \circ(x \circ \Delta+k)=\Delta+\underbrace{\Delta \cdot k}_{\in U \circ}
$$

we have $\operatorname{dim}\left(W_{0}\right)=n-2 \Rightarrow \operatorname{dim}\left(U_{0}\right)=1$
\Downarrow

$$
(x+k) \circ(x \circ \Delta+k)= \begin{cases}\Delta & p=1 / 2 \\ \Delta+u & p=1 / 2\end{cases}
$$

The issue with the diffusion layer

we need $x \lambda \circ(x \circ \Delta) \lambda=\Delta \lambda$

The issue with the diffusion layer
we need $x \lambda \circ(x \circ \Delta) \lambda=\Delta \lambda$

The issue with the diffusion layer

we need $x \lambda \circ(x \circ \Delta) \lambda=\Delta \lambda$
problem: the automorphisms of the brace
we equivalently need that

- $\lambda \in \mathrm{GL}(V,+) \cap \mathrm{GL}(V, o)$ or
- $\lambda \in \operatorname{Aut}(V,+, o)$ or
- $\lambda \in \operatorname{Aut}(V,+, \cdot)$

A first solution

if, again, $d=n-2$

$$
M_{e_{1}}=\left(\begin{array}{c|c}
1_{2} & 0 \\
& b \\
\hline 0 & 1_{n-2}
\end{array}\right) \text { and } M_{e_{2}}=\left(\begin{array}{c|c}
1_{2} & b \\
\hline 0 & 0 \\
\hline 1_{n-2}
\end{array}\right)
$$

for some $b \in \mathbb{F}_{2}^{n-2} \backslash\{0\}$

A first solution

if, again, $d=n-2$

$$
M_{e_{1}}=\left(\begin{array}{c|c}
1_{2} & 0 \\
\hline 0 & b \\
\hline & 1_{n-2}
\end{array}\right) \text { and } M_{e_{2}}=\left(\begin{array}{c|c}
1_{2} & b \\
\hline 0 & 1_{n-2}
\end{array}\right)
$$

for some $b \in \mathbb{F}_{2}^{n-2} \backslash\{0\}$

Theorem ([CBS19])
$\lambda \in \mathrm{GL}(V,+) \cap \mathrm{GL}(V, \circ)$ if and only if

$$
\lambda=\left(\begin{array}{cc}
A_{2} & B \\
0 & D_{n-2}
\end{array}\right)
$$

such that $A \in G L(2,+), D \in G L(n-2,+)$ such that $b D=b$ and $B \in \mathbb{F}_{2}^{(2, n-2)}$

Putting things together

we designed [CBS19] the first example of cipher which is

- resistant to classical differential cryptanalysis
- weak w.r.t. the revised differential attack using an operation $\hat{o}=(\underbrace{0}_{\mathrm{s}},+,+, \ldots,+\underbrace{}_{\mathrm{s}})$ such that $\operatorname{dim}\left(W_{\hat{o}}\right)=n-2$

Doing better?

- attacks w.r.t. operations of the type $\hat{o}=(\circ, \circ, \ldots, \circ)$

Doing better?

- attacks w.r.t. operations of the type $\hat{o}=(\circ, \circ, \ldots, \circ)$

$$
\Downarrow
$$

determine the automorphisms of the product of braces $(V,+, \hat{o})$ with $\operatorname{dim}\left(W_{\circ}\right)=s-2$
[ongoing work with M. Calderini and R. Invernizzi]

Doing better?

- attacks w.r.t. operations of the type $\hat{o}=(\circ, \circ, \ldots, \circ)$

determine the automorphisms of the product of braces $(V,+, \hat{o})$ with $\operatorname{dim}\left(W_{\circ}\right)=s-2$
[ongoing work with M. Calderini and R. Invernizzi]
- attacks w.r.t. operations with $\operatorname{dim}(W)<n-2$

Doing better?

- attacks w.r.t. operations of the type $\hat{o}=(\circ, \circ, \ldots, \circ)$
determine the automorphisms of the product of braces $(V,+, \hat{o})$ with $\operatorname{dim}\left(W_{\circ}\right)=s-2$
[ongoing work with M. Calderini and R. Invernizzi]
- attacks w.r.t. operations with $\operatorname{dim}(W)<n-2$
\Downarrow
determine the group of automorphisms of binary bi-braces [ongoing work with V. Fedele]

¿Questions?

Bibliography

E. Biham and A. Shamir.

Differential cryptanalysis of DES-like cryptosystems.
J. Cryptology, 4(1):3-72, 1991.
R. Civino, C. Blondeau, and M. Sala.

Differential attacks: using alternative operations.
Des. Codes Cryptogr., 87(2-3):225-247, 2019.
围 M. Calderini, R. Civino, and M. Sala.
On properties of translation groups in the affine general linear group with applications to cryptography.
J. Algebra, 569:658-680, 2021.

埥 A. Caranti, F. Dalla Volta, and M. Sala.
Abelian regular subgroups of the affine group and radical rings.
Publ. Math. Debrecen, 69(3):297-308, 2006.

[^0]: $1_{i . e .} f_{k} s$ have derivatives with large images
 ${ }^{2}$ spoiler: can be small!

