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Block ciphers

Ingredients

I n 2 N such that performing 2
n
operations is unfeasible

I V
def

= Fn
2
the message space

Definition
a block cipher is a set of 2

n
encryption functions indexed by parameters

called keys
� = {fk | 1  k  2

n} ⇢ Sym(V )

I mfk is the encryption of the message m 2 V using the key k

I there exists an e�cient algorithm to reconstruct fk
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Substitution-permutation networks
(e.g. AES, NIST standard)

I fk = ���k1
. . . ���kr

I �,�, k 7! (k1, k2, . . . , kr ) are public
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Cryptanalysis...

... means finding an invariant property I such that

P (f 2 � satisfies I) >> P (f 2 Sym(V ) satisfies I)

a good cipher vs a bad cipher in Sym(V )
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A famously exploited invariant

Definition
the derivative w.r.t. � 2 Fn

2
of f = fk 2 � is

f� : V ! V , x 7! xf + (x +�)f

(classical) di↵erential cryptanalysis

show that, for some or for all the keys, derivatives w.r.t. some fixed �s

have small images [BS91]

*

exhibit a pair (�I ,�O) such that the equation

xf�I
= xf + (x +�I )f = �O

has more solution than expected () Im(f�I
) is smaller)
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The classical solution

(unprovable) claim

if the encryption functions are such that

I � has derivatives with large image [computationally feasable]

I � has good di↵usion properties

then fks have large derivative images

di↵usion and key addition, being a�ne operations, do not alter the di↵er-

ence distribution!

I x�+ (x +�)� = �� for all x

I x�k + (x +�)�k = (x + k) + (x +�+ k) = � for all x and k

6 / 19

the

É



The classical solution

(unprovable) claim

if the encryption functions are such that

I � has derivatives with large image [computationally feasable]

I � has good di↵usion properties

then fks have large derivative images

di↵usion and key addition, being a�ne operations, do not alter the di↵er-

ence distribution!

I x�+ (x +�)� = �� for all x

I x�k + (x +�)�k = (x + k) + (x +�+ k) = � for all x and k

6 / 19



An alternative approach

everything is optimized to maximize the non-linearity w.r.t. the operation

+ used to perform the key addition induced by

T
def

= {�b : b 2 V | �b : x 7! x + b} < Sym(V )

I T is elementary abelian regular

I 8a, b 2 V a�b = a+ b
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An alternative approach

consider another elementary abelian regular group

T�
def

= {⌧b : b 2 V | ⌧b : 0 7! b} < Sym(V )

I 8a, b 2 V a � b def

= a⌧b
I (V , �) is a vector space over F2
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Looking at new derivatives

if � is a secure block ciphers w.r.t. (classical) di↵erential cryptanalysis
1
,

how large the images of �-derivatives are? 2

f �� : x 7! xf � (x ��)f

1i.e. fk s have derivatives with large images
2spoiler: can be small!
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Braces coming into play

before we even start, we assume T� < AGL(V ,+) [computational]

1. �-derivatives of � have smaller images OK

2. x� � (x ��)� =? Not-OK

[big issue, see later]

3. (x + k) � (x ��+ k) = ?

(x + k) � (x ��+ k) = x�k + (x ��)�k (1)

if �k 2 AGL(V , �), then Eq. (1) does not depend on x, therefore we require

T+ < AGL(V , �) [cryptanalytic]
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Binary bi-braces

we want to construct T� such that T+ normalizes T� and T� normalizes

T+, i.e. a (binary) bi-brace

in this setting we have, given

W�
def

= {a : a 2 V | �a = ⌧a}
= {a : a 2 V | 8b 2 V a+ b = a � b}
= Soc(V ,+, �),

Theorem ([CDVS06, CCS21])
1  dim(W�)  n � 2

and

U�
def

= V · V = ha · b | a, b 2 V i

where a · b = a+ b + a � b is such that U�  W� and V · V · V = 0
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Construction

from T� < AGL(V ,+) we have that, for each b 2 V ,

⌧b = Mb�b 2 AGL(V ,+)

Theorem ([CCS21])
let d = dim(W�) and W� being spanned by the last d vector of the
canonical basis {ei}ni=1

of V , then for each 1  i  n � d we have

Mei
=

✓
1n�d ⌃ei

0 1d

◆

for some ⌃ei
2 F (n�d,d)

2
[precise constraints omitted here]
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Solving the issue with the key addition

(x + k) � (x ��+ k) = �+� · k| {z }
2U�

we have dim(W�) = n � 2 ) dim(U�) = 1

+

(x + k) � (x ��+ k) =

(
� p = 1/2

�+ u p = 1/2
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The issue with the di↵usion layer

we need x� � (x ��)� = ��
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The issue with the di↵usion layer

we need x� � (x ��)� = ��

problem: the automorphisms of the brace

we equivalently need that

I � 2 GL(V ,+) \ GL(V , �) or
I � 2 Aut(V ,+, �) or
I � 2 Aut(V ,+, ·)
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A first solution

if, again, d = n � 2

Me1
=

0

@ 12
0

b
0 1n�2

1

A and Me2
=

0

@ 12
b
0

0 1n�2

1

A

for some b 2 Fn�2

2
\ {0}

Theorem ([CBS19])
� 2 GL(V ,+) \ GL(V , �) if and only if

� =

✓
A2 B
0 Dn�2

◆

such that A 2 GL(2,+), D 2 GL(n � 2,+) such that bD = b and

B 2 F (2,n�2)

2
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Putting things together

we designed [CBS19] the first example of cipher which is

I resistant to classical di↵erential cryptanalysis

I weak w.r.t. the revised di↵erential attack using an operation

�̂ = (�,+,+, . . . ,+) such that dim(W�̂) = n � 2

16 / 19

T T



Doing better?

doing better?

I attacks w.r.t. operations of the type �̂ = (�, �, . . . , �)

+
determine the automorphisms of the product of braces (V ,+, �̂)
with dim(W�) = s � 2

[ongoing work with M. Calderini and R. Invernizzi]

I attacks w.r.t. operations with dim(W ) < n � 2

+
determine the group of automorphisms of binary bi-braces

[ongoing work with V. Fedele]
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¿Questions?
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